Model search and inference by bootstrap \bumping"
نویسنده
چکیده
We propose a bootstrap-based method for searching through a space of models. The technique is well suited to complex, adaptively tted models: it provides a convenient method for nding better local minima, for resistant tting, and for optimization under constraints. Applications to regression, classiication and density estimation are described. The collection of models can also be used to form a conn-dence set for the true underlying model, using a generalization of Efron's percentile interval. We also provide results on the asymptotic behaviour of bumping estimates.
منابع مشابه
Sampling Representative Examples for Dimensionality Reduction and Recognition - Bootstrap Bumping LDA
We present a novel method for dimensionality reduction and recognition based on Linear Discriminant Analysis (LDA), which specifically deals with the Small Sample Size (SSS) problem in Computer Vision applications. Unlike the traditional methods, which impose specific assumptions to address the SSS problem, our approach introduces a variant of bootstrap bumping technique, which is a general fra...
متن کاملRegression tree construction by bootstrap: Model search for DRG-systems applied to Austrian health-data
BACKGROUND DRG-systems are used to allocate resources fairly to hospitals based on their performance. Statistically, this allocation is based on simple rules that can be modeled with regression trees. However, the resulting models often have to be adjusted manually to be medically reasonable and ethical. METHODS Despite the possibility of manual, performance degenerating adaptations of the or...
متن کاملPrediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system
Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...
متن کاملADAPTIVE NEURO-FUZZY INFERENCE SYSTEM OPTIMIZATION USING PSO FOR PREDICTING SEDIMENT TRANSPORT IN SEWERS
The flow in sewers is a complete three phase flow (air, water and sediment). The mechanism of sediment transport in sewers is very important. In other words, the passing flow must able to wash deposited sediments and the design should be done in an economic and optimized way. In this study, the sediment transport process in sewers is simulated using a hybrid model. In other words, using the Ada...
متن کاملProfile Predictive Inference
Bayesian predictive inference analyzes a dataset to make predictions about new observations. When a model does not match the data, predictive accuracy su ers. We develop population empirical Bayes ( ), a hierarchical framework that explicitly models the empirical population distribution as part of Bayesian analysis. We introduce a new concept, the latent dataset, as a hierarchical variable and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997